Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 283
Filter
1.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20245051

ABSTRACT

mRNA is a new class of drugs that has the potential to revolutionize the treatment of brain tumors. Thanks to the COVID-19 mRNA vaccines and numerous therapy-based clinical trials, it is now clear that lipid nanoparticles (LNPs) are a clinically viable means to deliver RNA therapeutics. However, LNP-mediated mRNA delivery to brain tumors remains elusive. Over the past decade, numerous studies have shown that tumor cells communicate with each other via small extracellular vesicles, which are around 100 nm in diameter and consist of lipid bilayer membrane similar to synthetic lipidbased nanocarriers. We hypothesized that rationally designed LNPs based on extracellular vesicle mimicry would enable efficient delivery of RNA therapeutics to brain tumors without undue toxicity. We synthesized LNPs using four components similar to the formulation used in the mRNA COVID19 vaccines (Moderna and Pfizer): ionizable lipid, cholesterol, helper lipid and polyethylene glycol (PEG)-lipid. For the in vitro screen, we tested ten classes of helper lipids based on their abundance in extracellular vesicle membranes, commercial availability, and large-scale production feasibility while keeping rest of the LNP components unchanged. The transfection kinetics of GFP mRNA encapsulated in LNPs and doped with 16 mol% of helper lipids was tested using GL261, U87 and SIM-A9 cell lines. Several LNP formations resulted in stable transfection (upto 5 days) of GFP mRNA in all the cell lines tested in vitro. The successful LNP candidates (enabling >80% transfection efficacy) were then tested in vivo to deliver luciferase mRNA to brain tumors via intrathecal administration in a syngeneic glioblastoma (GBM) mouse model, which confirmed luciferase expression in brain tumors in the cortex. LNPs were then tested to deliver Cre recombinase mRNA in syngeneic GBM mouse model genetically modified to express tdTomato under LoxP marker cassette that enabled identification of LNP targeted cells. mRNA was successfully delivered to tumor cells (70-80% transfected) and a range of different cells in the tumor microenvironment, including tumor-associated macrophages (80-90% transfected), neurons (31- 40% transfected), neural stem cells (39-62% transfected), oligodendrocytes (70-80% transfected) and astrocytes (44-76% transfected). Then, LNP formulations were assessed for delivering Cas9 mRNA and CD81 sgRNA (model protein) in murine syngeneic GBM model to enable gene editing in brain tumor cells. Sanger sequencing showed that CRISPR-Cas9 editing was successful in ~94% of brain tumor cells in vivo. In conclusion, we have developed a library of safe LNPs that can transfect GBM cells in vivo with high efficacy. This technology can potentially be used to develop novel mRNA therapies for GBM by delivering single or multiple mRNAs and holds great potential as a tool to study brain tumor biology.

2.
Advanced Therapeutics ; 6(5) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20244710

ABSTRACT

Delivery of self-amplifying mRNA (SAM) has high potential for infectious disease vaccination due to its self-adjuvanting and dose-sparing properties. Yet a challenge is the susceptibility of SAM to degradation and the need for SAM to reach the cytosol fully intact to enable self-amplification. Lipid nanoparticles are successfully deployed at incredible speed for mRNA vaccination, but aspects such as cold storage, manufacturing, efficiency of delivery, and the therapeutic window can benefit from further improvement. To investigate alternatives to lipid nanoparticles, a class of >200 biodegradable end-capped lipophilic poly(beta-amino ester)s (PBAEs) that enable efficient delivery of SAM in vitro and in vivo as assessed by measuring expression of SAM encoding reporter proteins is developed. The ability of these polymers to deliver SAM intramuscularly in mice is evaluated, and a polymer-based formulation that yields up to 37-fold higher intramuscular (IM) expression of SAM compared to injected naked SAM is identified. Using the same nanoparticle formulation to deliver a SAM encoding rabies virus glycoprotein, the vaccine elicits superior immunogenicity compared to naked SAM delivery, leading to seroconversion in mice at low RNA injection doses. These biodegradable nanomaterials may be useful in the development of next-generation RNA vaccines for infectious diseases.Copyright © 2023 The Authors. Advanced Therapeutics published by Wiley-VCH GmbH.

3.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20243743

ABSTRACT

Ionizable amino lipids are a major constituent of the lipid nanoparticles for delivering nucleic acid therapeutics (e.g., DLin-MC3-DMA in ONPATTRO , ALC-0315 in Comirnaty , SM-102 in Spikevax ). Scarcity of lipids that are suitable for cell therapy, vaccination, and gene therapies continue to be a problem in advancing many potential diagnostic/therapeutic/vaccine candidates to the clinic. Herein, we describe the development of novel ionizable lipids to be used as functional excipients for designing vehicles for nucleic acid therapeutics/vaccines in vivo or ex vivo use in cell therapy applications. We first studied the transfection efficiency (TE) of LNP-based mRNA formulations of these ionizable lipid candidates in primary human T cells and established a workflow for engineering of primary immune T cells. We then adapted this workflow towards bioengineering of CAR constructs to T cells towards non-viral CAR T therapy. Lipids were also tested in rodents for vaccine applications using self-amplifying RNA (saRNA) encoding various antigens. We have then evaluated various ionizable lipid candidates and their biodistribution along with the mRNA/DNA translation exploration using various LNP compositions. Further, using ionizable lipids from the library, we have shown gene editing of various targets in rodents. We believe that these studies will pave the path to the advancement in nucleic acid based therapeutics and vaccines, or cell gene therapy agents for early diagnosis and detection of cancer, and for targeted genomic medicines towards cancer treatment and diagnosis.

4.
Nieren- und Hochdruckkrankheiten ; 52(4):134-135, 2023.
Article in English | EMBASE | ID: covidwho-20241899

ABSTRACT

Objective: COVID-19 has emerged as a significant global health crisis causing devastating effects on world population accounting for over 6 million deaths worldwide. Although acute RTI is the prevalent cause of morbidity, kidney outcomes centered on a spectrum of AKI have evolved over the course of the pandemic. Especially the emerging variants have posed a daunting challenge to the scientific communities, prompting an urging requirement for global contributions in understanding the viral dynamics. In addition to canonical genes, several subgroup- specific accessory genes are located between the S and E genes of coronaviruses regarding which little is known. Previous studies have shown that accessory proteins (aps) in viruses function as viroporins that regulate viral infection, propagation and egress [1]. In this study we attempted to characterize the function of aps of coronavirus variants as ion channels. Furthermore, we also probed the interaction of ap4 with the host system. Method(s): Serial passaging (selection pressure), growth kinetics, confocal imaging, genome sequence analysis and proteomics were performed in Huh-7, MRC5 cells and/or human monocyte derived macrophages. Potassium uptake assay was performed in a Saccharo myces cerevisiae strain, which lacks the potassium transporters trk1 and trk2. Ion conductivity experiments were performed in Xenopus laevis oocytes using Two Electrode Voltage Clamp (TEVC) method. Result(s): Serial passaging demonstrated the acquisition of several frameshift mutations in ORF4 resulting in C-terminally truncated protein versions (ap4 and ap4a) and indicate a strong selection pressure against retaining a complete ORF4 in vitro. Growth kinetics in primary cells illustrated a reduction of viral titers when the full-length ap4 was expressed compared to the C-terminally truncated protein ap4a. Confocal imaging showed that ap4 and ap4a are not exclusively located in a single cellular compartment. Potassium uptake assay in yeast and TEVC analyses in Xenopus oocytes showed that ap4 and ap4a act as a weak K+ selective ion channel. In addition, accessory proteins of other virus variants also elicited microampere range of currents. Conclusion(s): Our study provides the first evidence that ap4 and other accessory proteins of coronavirus variants act as viroporins. Future studies are aimed at demonstrating the role of ap4 during the viral life cycle by modulating ion homeostasis of host cell in vivo (interacting proteins obtained from proteomic studies) and thereby serve as a tool for potential drug target.

5.
Cytotherapy ; 25(6 Supplement):S239, 2023.
Article in English | EMBASE | ID: covidwho-20239698

ABSTRACT

Background & Aim: Immune checkpoint inhibitors (ICI) revolutionized solid tumor treatment, however, in many tumors only partial response is achieved. Allocetra-OTS has an immune modulating effect on macrophages and dendritic cells and showed an excellent safety profile in patients including patients with sepsis and Covid-19. Here we investigated the anti-tumoral effect of Allocetra-OTS cellular therapy, in peritoneal solid tumor animal models. Methods, Results & Conclusion(s): Allocetra-OTS is manufactured from enriched mononuclear fractions and induced to undergo early apoptosis. Balb/c mice were inoculated intraperitoneally (IP) with AB12 (mesothelioma) with pLenti-PGK-V5-Luc-Neo and treated with anti- CTLA4 with or without Allocetra-OTS. Mice were monitored daily for clinical score and weekly using IVIS (Fig.1). Kaplan-Meier log rank test was done for survival. For Allocetra-OTS preparation, enriched mononuclear fractions were collected by leukapheresis from healthy eligible human donors and induced to undergo early apoptosis. Anti- CTLA4 standalone therapy significantly improved survival (Fig.2) from mean 34+/-9 to 44.9 +/-20 days. However, OTS standalone therapy was non-inferior and improved survival to 52.3 +/-20 days. Anti-CTLA4 + Allocetra-OTS combination therapy, ameliorated survival to 86.7+/-20 days with complete cancer remission in 60-100% of mice. Similar anti- tumoral effects of Allocetra-OTS were seen in mesothelioma model in a combination therapy with either anti-PD1 or cisplatin and using anti-PD1 in ID8 ovary cancer model. Based on single cell analysis confirmed by flow cytometry and pathology, the mechanism of action seems to be related or at least associated with an increase in f/480high peritoneal macrophages and a decrease in recruited macrophages, and to f/480high infiltration of the tumor. However, further studies are needed to confirm these observations. During IP tumor progression, Allocetra-OTS as a standalone therapy or in combination with ICI, or cisplatin, significantly reduced tumor size and resulted in complete remission in up to 100% treated mice. Similar results were obtained in ID8 ovary cancer. Based on excellent safety profile in > 50 patients treated in prior clinical trials for sepsis and Covid-19, Phase I/II clinical trial of Allocetra-OTS plus chemotherapy has started and three patient already recruited. A second phase I/II clinical trial of Allocetra- OTS plus anti-PD1, as a second- and third-line therapy in various cancers, was initiated in Q1 2023. [Figure presented]Copyright © 2023 International Society for Cell & Gene Therapy

6.
Cytotherapy ; 25(6 Supplement):S72, 2023.
Article in English | EMBASE | ID: covidwho-20239522

ABSTRACT

Background & Aim: The pro-angiogenic, immunoregulatory and anti- inflammatory properties of MSCs are being exploited for the development of cellular therapies, including the treatment of graft versus host disease (GvHD), inflammatory bowel disease and COVID-19. SNBTS have developed a GMP process to bank umbilical cord MSCs (UC-MSCs) whereby we can reliably bank 100 vials of 10 million P2 UC-MSCs per cord. Each of these vials can be extensively expanded and stored for specific applications. The ultimate aim of the bank is for off-the-shelf clinical use, e.g., in GvHD or as an adjuvant therapy in Islet transplantations. Methods, Results & Conclusion(s): During process development, different basal media and supplements were screened for proliferation and MSC marker expression. Cells grown in promising media combinations were then tested for tri-lineage differentiation (identity), their chemokine/cytokine expression and T-cell inhibition (function) assessed. Medium selected for further GMP development and scale up was ultimately determined by all round performance and regulatory compliance. GMP-like UC-MSCs were shown to have immune-modulatory activity in T-cell proliferation assays at 4:1 or 16:1 ratios. Co-culture of UC-MSCs and freshly isolated leukocytes, +/- the immune activating agent LPS, show a dose dependent survival effect on leukocytes. In particular, neutrophils, which are normally very short lived in vitro demonstrated increased viability when co-cultured with UCMSCs. The survival effect was partially reproduced when UC-MSC were replaced with conditioned medium or cell lysate indicating the involvement of soluble factors. This improved neutrophil survival also correlates with results from leukocyte migration studies that demonstrate neutrophils to be the main cell type attracted to MSCs in in vitro and in vivo. Genetic modification of UC-MSC may improve their therapeutic potential. We have tested gene editing by CRISPR/Cas9 technology in primary UC-MSCS. The CXCL8 gene, highly expressed in UC-MSC, was targeted in isolates from several different donors with editing efficiencies of 78-96% observed. This translated to significant knockdown of CXCL8 protein levels in resting cells, however after stimulation levels of CXCL8 were found to be very similar in edited and non-edited UC-MSCs. This observation requires further study, but overall the results show the potential to generate future banks of primary UC-MSCS with genetically enhanced pro-angiogenic, immunoregulatory and/or anti-inflammatory activities.Copyright © 2023 International Society for Cell & Gene Therapy

7.
European Journal of Human Genetics ; 31(Supplement 1):627-628, 2023.
Article in English | EMBASE | ID: covidwho-20235387

ABSTRACT

Background/Objectives: COVID-19 still represents a lifethreatening disease in individuals with a specific genetic background. We successfully applied a new Machine Learning method on WES data to extract a set of coding variants relevant for COVID- 19 severity. We aim to identify personalized add-on therapy. Method(s): A subset of identified variants, "actionable" by repurposed drugs, were functionally tested by in vitro and in vivo experiments. Result(s): Males with either rare loss of function variants in the TLR7 gene or L412F polymorphism in the TLR3 gene benefit from IFN-gamma, which is specifically defective in activated PBMCs, restoring innate immunity. Females heterozygous for rare variants in the ADAMTS13 gene and males with D603N homozygous polymorphism in the SELP gene benefit from Caplacizumab, which reduces vWF aggregation and thrombus formation. Males with either the low-frequency gain of function variant T201M in CYP19A1 gene or with poly-Q repeats >=23 in the AR gene benefit from Letrozole, an aromatase inhibitor, which restores normal testosterone levels, reducing inflammation and which rescues male golden hamsters from severe COVID-19. Conclusion(s): By adding these commonly used drugs to standard of care of selected patients, the rate of intubation is expected to decrease consistently, especially in patients with high penetrance rare genetic markers, mitigating the effect of the pandemic with a significant impact on the healthcare system.

8.
Yaoxue Xuebao ; 58(4):826-833, 2023.
Article in Chinese | EMBASE | ID: covidwho-20234481

ABSTRACT

Nucleic acids, as a next generation of biotechnology drugs, not only can fundamentally treat diseases, but also own significant platform characteristics in view of technology and production. Therefore, nucleic acid-based drugs have broad clinical applications in biomedical fields. However, nucleic acids are degradable and unstable, and have very low intracellular delivery efficiency in vitro and in vivo, which greatly limits their applications. In recent years, ionizable lipid-based lipid nanoparticles have shown promising application potentials and have been successfully applied to COVID-19 (Coronavirus Disease 2019) vaccines in clinic. Lipid nanoparticles demonstrate high in vivo delivery efficiency and good safety profile due to their unique structural and physicochemical properties, which provides many possibilities for their clinical applications for nucleic acid delivery in the future. This review focused on the characteristics of nucleic acid drugs and their delivery barriers, and discussed the approved nucleic acid drugs to illustrate the key aspects of the success of their delivery carrier system. In addition, problems to be solved in the field were highlighted.Copyright © 2023, Chinese Pharmaceutical Association. All rights reserved.

9.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20232181

ABSTRACT

Commercially available human platelet lysate (hPL) is produced using expired human platelets obtained from accredited blood banks in the United States. These platelets were originally intended for use in patient transfusion. The safety of platelets used in transfusion is managed by the U.S. Food Drug Administration (FDA), as well as the American Association of Blood Banks (AABB). These organizations set standards, including testing for transmissible diseases. The United States record for blood safety is well established, with extremely low rates of disease transmission, making the platelet units used for hPL manufacture low risk. The Covid-19 pandemic has increased awareness of emerging infectious diseases, even though transmission of Covid-19 via blood transfusion has not been documented. For that reason, gamma irradiated hPL offers an additional safety measure in the clinic. Chimeric Antigen Receptor (CAR) expressing T-cells have demonstrated potent clinical efficacy in patients with hematological malignancies. In addition, there are several phase I clinical trials evaluating the use of CAR-T-cells for targeting of solid tumorassociated antigens. Some of the challenging issues found during production of CAR-T cells are the efficiency of T cell transduction to generate CAR-T cells, the expansion of T cells to clinically relevant numbers and the long-term survival in vivo of the therapeutic cells. The use of human platelet lysate has been demonstrated to improve these issues. Our data from experiments performed using human CD3+ from donors demonstrates that human platelet lysates offer an improved performance on T cell expansion versus serum derived products. hPL efficiently promotes T cell expansion, with higher cell yields and lower cell exhaustion rate. Additionally, we efficiently developed a protocol for suspension culture of T cells, which could facilitate the large-scale expansion of allogeneic CAR-T cells.

10.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2126-2143, 2023 Apr.
Article in Chinese | MEDLINE | ID: covidwho-20245305

ABSTRACT

Sanhan Huashi formula(SHF) is the intermediate of a newly approved traditional Chinese medicine(TCM) Sanhan Huashi Granules for the treatment of COVID-19 infection. The chemical composition of SHF is complex since it contains 20 single herbal medicines. In this study, UHPLC-Orbitrap Exploris 240 was used to identify the chemical components in SHF and in rat plasma, lung and feces after oral administration of SHF, and heat map was plotted for characterizing the distribution of the chemical components. Chromatographic separation was conducted on a Waters ACQUITY UPLC BEH C_(18)(2.1 mm×100 mm, 1.7 µm) using 0.1% formic acid(A)-acetonitrile(B) as mobile phases in a gradient elution. Electrospray ionization(ESI) source was used to acquire data in positive and negative mode. By reference to quasi-molecular ions and MS/MS fragment ions and in combination with MS spectra of reference substances and compound information in literature reports, 80 components were identified in SHF, including 14 flavonoids, 13 coumarins, 5 lignans, 12 amino-compounds, 6 terpenes and 30 other compounds; 40 chemical components were identified in rat plasma, 27 in lung and 56 in feces. Component identification and characterization of SHF in vitro and in vivo lay foundations for disclosure of its pharmacodynamic substances and elucidation of the scientific connotation.


Subject(s)
COVID-19 , Drugs, Chinese Herbal , Lignans , Rats , Animals , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry
11.
ACS Chem Neurosci ; 14(12): 2253-2255, 2023 06 21.
Article in English | MEDLINE | ID: covidwho-20235627

ABSTRACT

After being postponed twice due to the global COVID-19 pandemic, approximately 200 scientists gathered in Lyon, France, in late June 2022 for the 18th Biennial Monitoring Molecules in Neuroscience (MMiN) Research Conference. Although there were unprecedented challenges involved with coordinating the 18th MMiN conference, the meeting was a huge success. The meeting provided a wonderful opportunity for young neuroscientists to network and learn about the current state of molecular monitoring in neuroscience research. The topics spanned advancements in well-established analytical techniques to novel method development. Some of the noteworthy techniques expediting our understanding of circuit-level neurochemical function include multiplexed detection of numerous neurochemicals, well-established sensors leveraging enzymes and other biologic components, and the development of diverse, customizable genetically encoded sensors.


Subject(s)
COVID-19 , Neurosciences , Humans , Pandemics
12.
J Biophotonics ; 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-20241012

ABSTRACT

Flow cytometry (FC) is a versatile tool with excellent capabilities to detect and measure multiple characteristics of a population of cells or particles. Notable advancements in in vivo photoacoustic FC, coherent Raman FC, microfluidic FC, and so on, have been achieved in the last two decades, which endows FC with new functions and expands its applications in basic research and clinical practice. Advanced FC broadens the tools available to researchers to conduct research involving cancer detection, microbiology (COVID-19, HIV, bacteria, etc.), and nucleic acid analysis. This review presents an overall picture of advanced flow cytometers and provides not only a clear understanding of their mechanisms but also new insights into their practical applications. We identify the latest trends in this area and aim to raise awareness of advanced techniques of FC. We hope this review expands the applications of FC and accelerates its clinical translation.

13.
J Med Virol ; 95(6): e28863, 2023 06.
Article in English | MEDLINE | ID: covidwho-20238042

ABSTRACT

The ongoing COVID-19 has not only caused millions of deaths worldwide, but it has also led to economic recession and the collapse of public health systems. The vaccines and antivirals developed in response to the pandemic have improved the situation markedly; however, the pandemic is still not under control with recurring surges. Thus, it is still necessary to develop therapeutic agents. In our previous studies, we designed and synthesized a series of novel 2-anilinoquinazolin-4(3H)-one derivatives, and demonstrated inhibitory activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and MERS-CoV in vitro. We then conducted in vivo studies using modified compounds that are suitable for oral administration. These compounds demonstrated no toxicity in rats and inhibited viral entry. Here, we investigated the in vivo efficacy of these drug candidates against SARS-CoV-2. Three candidate drugs, 7-chloro-2-((3,5-dichlorophenyl)amino)quinazolin-4(3H)-one (1), N-(7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-N-(3,5-dichlorophenyl)acetamide (2), and N-(7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-N-(3,5-difluorophenyl)acetamide (3) were administered orally to hACE2 transgenic mice at a dose of 100 mg/kg. All three drugs improved survival rate and reduced the viral load in the lungs. These results show that the derivatives possess in vivo antiviral efficacy similar to that of molnupiravir, which is currently being used to treat COVID-19. Overall, our data suggest that 2-anilinoquinazolin-4(3H)-one derivatives are promising as potential oral antiviral drug candidates against SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Rats , Acetamides , Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/therapy , Disease Models, Animal , Mice, Transgenic , Quinazolines/pharmacology , Quinazolines/therapeutic use , SARS-CoV-2/genetics
14.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: covidwho-20237382

ABSTRACT

The ongoing COVID-19 pandemic highlights the urgent need for effective antiviral agents and vaccines. Drug repositioning, which involves modifying existing drugs, offers a promising approach for expediting the development of novel therapeutics. In this study, we developed a new drug, MDB-MDB-601a-NM, by modifying the existing drug nafamostat (NM) with the incorporation of glycyrrhizic acid (GA). We assessed the pharmacokinetic profiles of MDB-601a-NM and nafamostat in Sprague-Dawley rats, revealing rapid clearance of nafamostat and sustained drug concentration of MDB-601a-NM after subcutaneous administration. Single-dose toxicity studies showed potential toxicity and persistent swelling at the injection site with high-dose administration of MDB-601a-NM. Furthermore, we evaluated the efficacy of MDB-601a-NM in protecting against SARS-CoV-2 infection using the K18 hACE-2 transgenic mouse model. Mice treated with 60 mg/kg and 100 mg/kg of MDB-601a-NM exhibited improved protectivity in terms of weight loss and survival rates compared to the nafamostat-treated group. Histopathological analysis revealed dose-dependent improvements in histopathological changes and enhanced inhibitory efficacy in MDB-601a-NM-treated groups. Notably, no viral replication was detected in the brain tissue when mice were treated with 60 mg/kg and 100 mg/kg of MDB-601a-NM. Our developed MDB-601a-NM, a modified Nafamostat with glycyrrhizic acid, shows improved protectivity against SARS-CoV-2 infection. Its sustained drug concentration after subcutaneous administration and dose-dependent improvements makes it a promising therapeutic option.


Subject(s)
COVID-19 , SARS-CoV-2 , Rats , Humans , Animals , Mice , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/therapeutic use , Pandemics , Disease Models, Animal , Rats, Sprague-Dawley
15.
Pharmaceutics ; 15(5)2023 May 22.
Article in English | MEDLINE | ID: covidwho-20231913

ABSTRACT

Coronavirus infections are neuroinvasive and can provoke injury to the central nervous system (CNS) and long-term illness consequences. They may be associated with inflammatory processes due to cellular oxidative stress and an imbalanced antioxidant system. The ability of phytochemicals with antioxidant and anti-inflammatory activities, such as Ginkgo biloba, to alleviate neurological complications and brain tissue damage has attracted strong ongoing interest in the neurotherapeutic management of long COVID. Ginkgo biloba leaf extract (EGb) contains several bioactive ingredients, e.g., bilobalide, quercetin, ginkgolides A-C, kaempferol, isorhamnetin, and luteolin. They have various pharmacological and medicinal effects, including memory and cognitive improvement. Ginkgo biloba, through its anti-apoptotic, antioxidant, and anti-inflammatory activities, impacts cognitive function and other illness conditions like those in long COVID. While preclinical research on the antioxidant therapies for neuroprotection has shown promising results, clinical translation remains slow due to several challenges (e.g., low drug bioavailability, limited half-life, instability, restricted delivery to target tissues, and poor antioxidant capacity). This review emphasizes the advantages of nanotherapies using nanoparticle drug delivery approaches to overcome these challenges. Various experimental techniques shed light on the molecular mechanisms underlying the oxidative stress response in the nervous system and help comprehend the pathophysiology of the neurological sequelae of SARS-CoV-2 infection. To develop novel therapeutic agents and drug delivery systems, several methods for mimicking oxidative stress conditions have been used (e.g., lipid peroxidation products, mitochondrial respiratory chain inhibitors, and models of ischemic brain damage). We hypothesize the beneficial effects of EGb in the neurotherapeutic management of long-term COVID-19 symptoms, evaluated using either in vitro cellular or in vivo animal models of oxidative stress.

16.
Yaoxue Xuebao ; 58(4):867-874, 2023.
Article in Chinese | EMBASE | ID: covidwho-2324463

ABSTRACT

Vaccination has been proved to be the most effective strategy to prevent the Corona Virus Disease 2019 (COVID-19). The mRNA vaccine based on nano drug delivery system (NDDS) - lipid nanoparticles (LNP) has been widely used because of its high effectiveness and safety. Although there have been reports of severe allergic reactions caused by mRNA-LNP vaccines, the mechanism and components of anaphylaxis have not been completely clarified yet. This review focuses on two mRNA-LNP vaccines, BNT162b2 and mRNA-1273. After summarizing the structural characteristics, potential allergens, possible allergic reaction mechanism, and pharmacokinetics of mRNA and LNP in vivo, this article then reviews the evaluation methods for patients with allergic history, as well as the regulations of different countries and regions on people who should not be vaccinated, in order to promote more safe injection of vaccines. LNP has become a recognized highly customizable nucleic acid delivery vector, which not only shows its value in mRNA vaccines, but also has great potential in treating rare diseases, cancers and other broad fields in the future. At the moment when mRNA-LNP vaccines open a new era of nano medicine, it is expected to provide some inspiration for safety research in the process of research, development and evaluation of more nano delivery drugs, and promote more nano drugs successfully to market.Copyright © 2023, Chinese Pharmaceutical Association. All rights reserved.

17.
Yaoxue Xuebao ; 58(4):826-833, 2023.
Article in Chinese | EMBASE | ID: covidwho-2322579

ABSTRACT

Nucleic acids, as a next generation of biotechnology drugs, not only can fundamentally treat diseases, but also own significant platform characteristics in view of technology and production. Therefore, nucleic acid-based drugs have broad clinical applications in biomedical fields. However, nucleic acids are degradable and unstable, and have very low intracellular delivery efficiency in vitro and in vivo, which greatly limits their applications. In recent years, ionizable lipid-based lipid nanoparticles have shown promising application potentials and have been successfully applied to COVID-19 (Coronavirus Disease 2019) vaccines in clinic. Lipid nanoparticles demonstrate high in vivo delivery efficiency and good safety profile due to their unique structural and physicochemical properties, which provides many possibilities for their clinical applications for nucleic acid delivery in the future. This review focused on the characteristics of nucleic acid drugs and their delivery barriers, and discussed the approved nucleic acid drugs to illustrate the key aspects of the success of their delivery carrier system. In addition, problems to be solved in the field were highlighted.Copyright © 2023, Chinese Pharmaceutical Association. All rights reserved.

18.
Heart Rhythm ; 20(5 Supplement):S268-S269, 2023.
Article in English | EMBASE | ID: covidwho-2321882

ABSTRACT

Background: Aging and binge alcohol abuse are both known as independent risk factors for both atrial and ventricular arrhythmias. With the COVID-19 pandemic, increased social isolation has significantly increased alcohol consumption worldwide. Older adults are a high-risk drinking group and alcohol significantly enhances the risk of arrhythmia onset. Yet, how alcohol (a secondary stressor) drives spontaneous atrial and ventricular arrhythmia onset in the aged heart (a primary stressor) remains unclear. Objective(s): We recently reported the stress-response kinase c-jun N-terminal kinase 2 (JNK2) underlies alcohol-enhanced atrial arrhythmia vulnerability (pacing-induced) in healthy young hearts. Here, we reveal a critical role of JNK2 in alcohol-driven arrhythmia onset in the aged heart in vivo. Method(s): Ambulatory ECGs were recorded using wireless telemeters in binge alcohol-exposed aged (24 months) and young mice (2 months). Spontaneous premature atrial and ventricular contractions (PACs, PVCs), atrial and ventricular tachycardia (AT, VT) were quantified as previously described. The role of JNK2 in triggered arrhythmic activities was assessed using a well-evaluated JNK2-specific inhibitor and our unique cardiac-specific MKK7D and MKK7D-JNK2dn mouse models with tamoxifen inducible overexpression of constitutively active MKK7 (a JNK upstream activator) or co-expression of MKK7D and inactive dominant negative JNK2 (JNK2dn). Result(s): We found that binge alcohol exposure in aged mice (n=14) led to spontaneous PACs/PVCs (75% of the mice), and AT/VT episodes (50%) along with a 21% mortality rate. However, alcohol-exposed young (n=5) and non-alcohol-exposed aged mice (n=11) were absent of any spontaneous arrhythmic activities or premature death. Intriguingly, JNK2-specific inhibition in vivo abolished those alcohol-associated triggered activities and mortality in aged mice. The causative role of JNK2 in triggered arrhythmias and premature death was further supported by the high frequency of spontaneous PACs/PVCs and nonsustained AT/VT episodes along with a 50% mortality rate in MKK7D mice (n=10), which was strikingly alleviated in MKK7D-JNK2dn mice (n=5) with cardiac-specific JNK2 competitive inhibition. Conclusion(s): Our findings are the first to reveal that stress kinase JNK2 underlies binge alcohol-evoked atrial and ventricular arrhythmia initiation in aged mice. Modulating JNK2 could be a novel therapeutic strategy to treat and/or prevent binge drinking-evoked cardiac arrhythmias.Copyright © 2023

19.
Letters in Drug Design & Discovery ; 20(6):684-698, 2023.
Article in English | ProQuest Central | ID: covidwho-2321535

ABSTRACT

Background: COVID-19 (coronavirus disease 2019) is still a major challenge worldwide. The disease is caused by binding the coronavirus to ACE2 receptors on lung cells, infecting the cells and triggering the onset of symptoms. The prevention of such a binding in which the virus is eventually unable to enter the cell could be a promising therapeutic approach.Methods: In this in silico study, 306 compounds of Lamiaceae family native in Iran (native Mints) were retrieved from several databases as 3D structures, and after that molecular docking and virtual screening, the compounds with inhibitory potential were selected in terms of free energy binding against the spike protein of the virus. The pharmacokinetic profile of selected compounds was evaluated, and by molecular dynamic simulation and MM/PBSA, four compounds were further assessed for binding affinities against the receptor-binding domain of the spike.Results: The results showed the Catechin gallate and Perovskone B from Stachys and Salvia genus generated a stronger binding affinity, and therefore could act as potential inhibitory compounds of RBD of the SARS-CoV-2 spike protein.Conclusion: This study revealed that some members of the Lamiaceae family could be employed to inhibit SARS-CoV-2 activity through interaction with spike protein and therefore could be used for further investigation in vitro and in vivo.

20.
American Journal of Gastroenterology ; 117(10 Supplement 2):S1898, 2022.
Article in English | EMBASE | ID: covidwho-2326306

ABSTRACT

Introduction: Ivermectin is an antiparasitic medication that is primarily metabolized by the liver. During the COVID-19 pandemic, researchers demonstrated that Ivermectin successfully inhibited the replication of SARS-COV-2 in vivo, but current research has failed to demonstrate clinical benefit for treatment of COVID-19. Despite this, misinformation campaigns have misled patients to ingest Ivermectin at concentrations meant for domestic animals. Here, we present a case of acute liver failure secondary to the use of Ivermectin. Case Description/Methods: A 61-year-old man with medical history of ischemic cardiomyopathy with last echocardiogram showing ejection fraction at 21%, atrial fibrillation on warfarin for oral anticoagulation, and previously treated Hepatitis C presented with generalized weakness and yellowish discoloration of the skin worsening over the last two weeks. The patient denied significant alcohol use, acetaminophen use, or illicit drugs. He admitted to injecting himself with two doses of weight-based horse ivermectin, for COVID prophylaxis, two weeks prior to his presentation. Physical exam was pertinent for scleral icterus and hepatomegaly with no abdominal tenderness. Initial labs revealed elevated liver chemistries in a mixed pattern (Figure 1). Acute hepatitis panel, HSV, and CMV were negative. Hepatitis C antibodies were positive, but the patient was in sustained virologic response. Full workup for chronic liver disease was unremarkable. Ultrasound revealed hepatosplenomegaly with patent portal and hepatic vasculature. Subsequently, the patient developed hepatic encephalopathy along with his coagulopathy, raising concern for acute hepatic failure. The patient was transferred to the ICU and started on NAcetylcysteine, rifaximin, and supportive care. The patient recovered well and fortunately did not require liver transplant. Discussion(s): While the FDA recommends against the use of Ivermectin for COVID-19, many continue to inappropriately consume it. Ivermectin-induced liver failure is a rare but deadly side effect. Given our patient's rapid onset of symptoms post-self injection of Ivermectin, his liver injury was presumed to be related to Ivermectin. The drug interaction between Ivermectin and warfarin had worsened the patients coagulopathy. Physicians should be aware of the ways Ivermectin overdose may clinically present to avoid delayed treatment. This case demonstrates the detriments of perpetuation of medical misinformation to care.

SELECTION OF CITATIONS
SEARCH DETAIL